Development of a Highly Sensitive Quantification System for Assessing DNA Quality in Forensic Samples

SUDHIR K. SINHA, PH.D. CEO INNOGENOMICS TECHNOLOGIES

WWW.INNOGENOMICS.COM

QUANTIFICATION

- Several different fluorescence-based quantification assays are currently available.
- Reduced amplicon size has enabled STR analysis of highly compromised samples.
- A system to assess the amount of DNA degradation in forensic samples would be useful in determining which test kit to use.

What are SINEs?

 Short INterspersed Elements
70 - 300 Base Pairs
High Copy Number (>100,000 Copies/Genome)

QUANTIFICATION

- A multi-copy, *Alu* based approach, to quantify human specific DNA in forensic samples, has been used previously with high sensitivity.
- Walker et al 2005; Shewale et al 2007; Opel et al 2008; Nicklas JA, 2012

QUANTIFICATION SYSTEM

Primers and TaqMan® probes for 2 independent *interspersed elements*:

- ~80 bp target sequence labeled with FAM ("short" target)
- ~290 bp target sequence labeled with Cy5 ("long" target)

Internal Synthetic DNA Control

- Cy3 labeled ~90 bp fragment for an Internal Positive Control (IPC)
- IPC assessment for PCR inhibitors

Melt Curve Analysis

Short Target

AB 7500 Amplification Plots

Long Target

Short Target

AB 7500 Standard Curves

Long Target

Short Target

Long: efficiency = 94.9%, R2=0.992

Short: efficiency = 98.7%, R2=0.998

REAL TIME PCR METRICS

- Observations from 35 runs
 - <u>Short target</u>:
 - Average efficiency: 95%, Average R² value: 0.994
 - <u>Long target</u>:
 - Average efficiency: 91%, Average R² value: 0.993
- Standards dilution scheme ranges from:
 - 20 ng/ul to 0.009 ng/ul.
- Degradation Ratio expressed as a percentage =
 - (1-[Long Qty/Short Qty]) * 100

SPECIES STUDY

CONCORDANCE STUDY

- 19 samples quantified using Degradation Assay and Quantifiler® Human
- Quantifiler® human DNA concentrations averaged 140% of those calculated using the short target of this dual target assay
- If differences were observed, in all instances, Quantifiler® human values were higher than dual target assay values
- Differences are attributed to differences in the DNA standards and differences in amplicon length (62 bp vs. 80 bp)

SENSITIVITY STUDY

REPRODUCIBILITY STUDY

INHIBITION STUDY HEMATIN

INHIBITION STUDY HUMIC ACID

DEGRADATION STUDIES

- Sonication
 - Mixture sample
 - Single source sample
- DNase-I
 - Mixture sample
 - Single source sample
- Environmental Degradation
- Targeted 3 concentrations of total DNA for Identifiler Plus Amplifications: 1 ng, 500 pg, and 200 pg
 - 28 cycles for IDP

DEGRADATION STUDY: SONICATION 1 NG INPUT [DNA]

DEGRADATION STUDY: SONICATION

DEGRADATION STUDY: DNASE I 1 NG INPUT [DNA]

DEGRADATION STUDY: DNASE I

DEGRADATION STUDY: ENVIRONMENTAL DEGRADATION: 200 PG INPUT [DNA]

ENVIRONMENTAL DEGRADATION

CONCLUSION

- A dual target human qualitative / quantitative / inhibition assessment system has been developed
- Extremely sensitive: ~9 picograms/µl
- Accurately predicts degradation ratio of a biological sample
- Valuable tool for deciding which DNA test kit to utilize and how much input DNA to use when processing forensically compromised samples

Acknowledgements

Robyn Thompson Tess Cherlin Anne Montgomery Gina Pineda Sid Sinha

This material is based upon work supported by the National Science Foundation, Award Number: 1230352. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

<u>Contact Info:</u> Sudhir K. Sinha, Ph.D. <u>ssinha@innogenomics.com</u>

#504-573-6443 office

Thank you for your time

